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Introduction and Background Research

Spotify Podcast : “Digital audio series  - Driving Growth Through 
Personalization”

What is the background project?
⊹ Spotify is known for its personalized playlist feature. 
⊹ Spotify relies on machine learning to create recommendations based on users’ 

engagement data.
⊹ Refer to HBS recommendations1 : “using NLP to analyze podcast content to improve 

personalized playlist feature”

Why is this project interesting?
⊹ By implementing NLP techniques to analyze podcast data/metadata (show 

description, episode description, transcript), we can validate podcasters’ descriptions 
of its content for classification.



Business Use Case 

Where we are now

⊹ The significant growth of total monthly Spotify active users: 19% year over year, to 
381 million in Q3 (up from 365 million)

⊹ Spotify Premium subscribers: 19% to 172 million in the quarter.
⊹ However no platforms provide recommendations for podcasts.
⊹ Existing recommendation tool: Spotify’s Find the One online quiz (asks only a handful 

of questions, recommend the podcasts based on user responses)

Where we want to go

Build a classifier to help listeners discover new podcasts episodes or series 
⊹ Using Spotify Podcast Data Set, we want to implement NLP techniques to provide a 

sophisticated recommendation lists by performing classification.

https://findtheone.byspotify.com/


The Data and How it Was Accessed 
Spotify Podcast Data Set

● Around 100,000 podcast episodes containing show 
description, episode description, transcript, publisher, 
etc.

● Episodes are varied in nature 

Procurement

● Podcast data readily available, to facilitate research 
on podcasts through the lens of speech and audio 
technology, natural language processing, information 
retrieval, and linguistics. 

● Timeline end to end ~2 weeks 

Data found at Podcast 
by Spotify Dataset site

https://podcastsdataset.byspotify.com


Data Preview



Design Choices and Rationale

● Lemmatization
○ Filtering podcast descriptions for 

specific words 
○ Filtering for different forms of the 

same word 

● LDA 
○ Understand the podcasts 

clusters 

● Word2Vec with LDA cluster
○ Similarity between words in LDA 

clusters and podcast show description

● Google’s Word2Vec with manual 
clusters
○ Similarity between words in the 

podcast show description and 
manually generated clusters



Method 1: Pre-processing through Lemmatization

Implementation

⊹ We used the “show_description” column in the dataset after removing the special 
characters and stop words 

⊹ We then use bi-grams with lemmatization of the words to help filter out the podcasts 
by the meaning of words rather than the words itself while tokenizing them

Methodology

⊹ After splitting the “show descriptions” in words, removing the special characters as 
well as stop words, we will convert all the words in the lower case.

⊹ By using the the lemmatizer from the nltk package, we convert all the words to their 
verb form for capturing the essence of the word in different aspects it is used in.

⊹ Then we made the n-grams of 2 to 4 and converted them into vectors them for every 
“show_description”



Method 2: LDA Topic Modelling

Implementation

⊹ Using “show_description” column, we built our scikit-learn LDA model and obtained 5 
clusters describing different topics: 



Method 2: LDA Topic Modelling (continued)



Methods 3a: Word2Vec with LDA clusters
Implementation
⊹ After getting the 5 clusters from topic modeling we joined the words in each cluster 

into a string.
⊹ Similarity scores are calculated for each of the topic keywords for each of the show 

descriptions which are then used to decide which topic that specific podcast falls into.

Methodology
⊹ After regex transformation of the topic tokens followed by removal of stop words, we 

create the word vectors for the search query use the word2vec function from the 
pyspark package.

⊹ We then defined our own similarity function to compare the vector for the search 
query with that of each descriptions’ vectors.

⊹ The topic which gives the highest similarity score for a description is the label for that 
description.



Method 3b: Google’s Word2Vec and Manual Generated Topics

Why? 

Topic clusters from LDA topic modelling is almost random

Implementation

⊹ We manually built a bag of words for each genre: Comedy, Health and fitness, News, 
Politics, Pop culture, Religion, Sports and True crime. 

⊹ Applied calculate_similarity function to every podcasts to every genre’s joined bag of 
words 

⊹ Word2Vec model: GoogleNews-vectors-negative300.bin.gz



Method 3b: Google’s Word2Vec and Manually Generated Topics 
(continued)



Evaluation and Results

Evaluation 
⊹ Main evaluation metric: Model’s Result vs. Manual Annotation
⊹ Reason: inability to A/B test real users and no labelled data
⊹ Based on manual tags we then were able to calculate the accuracy score of the 

models used. 

Results 
⊹ Based on the 2 ways of modelling used we can clearly see that the best performing 

model is manually generated clusters combined with Google’s Word2Vec: 84% 
accuracy

⊹ The other model used had a lower accuracy of 28%
⊹ The results are all based on the use of manual tagging of first 50 podcast episodes 



Demonstration: R Shiny App



Findings and Limitation

Findings
⊹ The best method was using manually generated genres’ bags of words and Google’s 

Word2Vec model
⊹ Podcasts tend to fall in multiple genres as opposed to one. Thus, we used the top 3 

genres’ similarity scores to tag each podcast.

Limitations
⊹ Lack of label made it challenging to evaluate our model performance
⊹ Very challenging to implement RoBERTa without having a labeled dataset
⊹ A/B testing real users could not be done as an evaluation in the limited timeframe
⊹ The original idea of using “transcript” column cannot be performed due to transcript 

length. Therefore, “show_description” column was used to perform the analysis. 
⊹ The limitation of Spotify’s Podcast API  to obtain more metadata



Conclusion and Recommendation 
Conclusion 
⊹ Google’s Word2Vec model still outperforms our custom-built Word2Vec model
⊹ Good first step, the project needs more work, as outlined in the limitations section
⊹ Spotify’s podcast catalog is rather limited in nature

Recommendation 
⊹ To perform analysis on the full transcript as opposed to just the show description. We 

needed to use the “show_description” due to local memory limitations. 
⊹ As more observations are available, we presume building a customized Word2Vec 

would be better than using Google Word2Vec model 
⊹ To perform other methods such as BERT and Word2Vec combined with K-means 

clustering


