

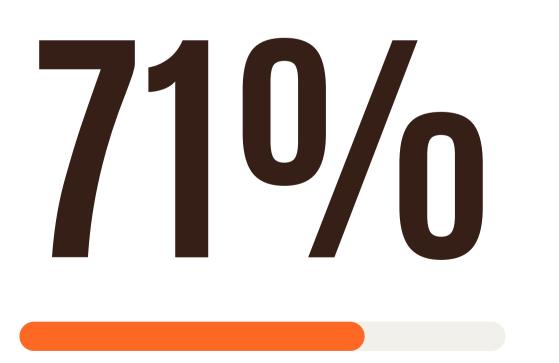
Does a raise in yearly increments improve tenures of Google software engineers?

April 15, 2021

MARCUS LOKE, ANNI YI, YUSEN ZHANG, ROMAULI BUTARBUTAR | RESEARCH DESIGN PROJECT PRESENTATION

Presentation flow

- Introduction and problem statement
- Research questions and hypotheses
- Research plan
- Simulation results



462/500

Google stands at 462nd spot out of Fortune 500 companies for its low employee retention rate.

In 2018, the tech sector suffered the highest turnover rates of 13.2% as compared to other industries.

According to a Deloitte survey, close to half of respondents chose "pay" as the top reason for leaving a company.

According to The Dice salary report, 71% cited "seeking salary compensation" as the top reason for leaving a company.

Slow the business and productivity losses

If a software engineer leaves, it takes 43 days on average to hire a new one (approx. 1.5 months of productivity loss).

REPERCUSSIONS **OF ATTRITION**

Revenue loss

leaves.

the team.

Cost around \$33K for each employee who

Loss of intellectual capital

Create bottlenecks and reduces morale of

2.7% YEARLY INCREMENT

According to the US Bureau of Labor Statistics (2021 report), yearly increments for tech firms was 2.7%, which begs the question...

RESEARCH QUESTION

Can a salary increment of 5% at the end of the first year increase the average tenure for Google software engineers in the United States? 7

HYPOTH ESE

NULL HYPOTHESIS

A salary increment of 5% at the end of the first year does not increase the average tenure of Google software engineers.

 $H_0: T_{avg,5\%} - T_{avg,2.7\%} \leqslant 0,$

ALTERNATIVE HYPOTHESIS

A salary increment of 5% at the end of the first year *improves* the average tenure of Google software engineers.

 $H_1: T_{avg,5\%} - T_{avg,2.7\%} > 0$

RESEARCH PLAN

1	POPULAT • 160 God • 6 month
2	SAMPLE • Cluster offices • Exclude • Exclude
3	COMPAR • Treatme • Control

FION OF INTEREST

- ogle software engineers
- ns < Tenure < 1 year

SELECTION

- & random sampling across 4 different city
- those with poor evaluations
- those that Google's not inclined to retain

ISON

ent group (5% increment) group (2.7% increment)

Treatment Groups (5% Increment)	Control Groups
San Francisco, CA, Office (20 people)	San Francisco, C
New York City, NY, Office (20 people)	New York City, N
Sunnyvale, CA, Office (20 people)	Sunnyvale, CA, C
Chicago, IL, Office (20 people)	Chicago, IL, Offic

"Why a treatment/control group in each city office?"

In order to mitigate the influence of potential confounding factors or multicollinearity due to the different standards of living between cities.

s (2.7% Increment)
CA, Office (20 people)
VY, Office (20 people)
Office (20 people)
ice (20 people)

RESEARCH PLAN

4	VARIABLES • Independent 5% (treated • Dependent measured
5	STATISTIC • Two-sam ("greater" • To test th treatmen
6	DATA COL • Work wit who satis • Randomiz • Need cle

ES

- dent variable: The salary increment of either tment) or 2.7% (control).
- ent variable: The tenure of employees
- ed in years

CAL ANALYSIS PLAN

- nple t-test with one-sided alternative
- the difference in mean tenures between the
- nt and control groups

LLECTION

- th Google HR to obtain list of employees
- isfy inclusion criteria
- ize based on last name
- earance from Google Management

REDUCE RISK OF INTERMINGLING

To reduce risk of intermingling, we will find divisions that are relatively distinct for the control and treatment groups.

E.g., control group from Google Play and treatment group from Google Cloud.

13 LIMITATIONS & UNCERTAINTIES

Unmeasured variables may influence the dependent variable (e.g., family income/wealth, employee satisfaction, yearly bonus, staff benefits, etc.)

2

Intermingling/sharing of salary may still be possible (e.g., subjects of treatment group may be friends with subjects of control group)

SIMULATION RESULTS

BACKGROUND

We select four city offices as our experimental subjects. In each city there will be two groups of participants – treatment group and control group; each group has 20 participants. Then we compare the difference in mean tenure.

Sample size

160

Effect size

0.5 years

Confidence interval

95%

Power

90%

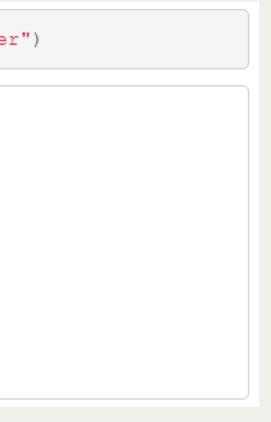
STANDARD DEVIATION

Based on initial assumptions, we compute SD = effect size / d = 1.075955

pwr.t.test(n=80, sig.level=0.05, power=0.9, type="two.sample", alternative="greater")

```
Two-sample t test power calculation

n = 80


d = 0.4647034

sig.level = 0.05

power = 0.9

alternative = greater

NOTE: n is number in *each* group
```


VETHODOLOGY

EFFECT OF 0.5 YEARS

ONE TIME EXPERIMENT

Control: mean = 1.9 years (based on literature review) Treatment: mean = 2.4 years (1.9 + 0.5)

REPEAT EXPERIMENT 1000 TIMES

Under assumption of an <u>effect of 0.5</u> <u>years</u>

VETHODOCO

NO EFFECT

ONE TIME EXPERIMENT

Control: mean = 1.9 years Treatment: mean = 1.9 years

REPEAT EXPERIMENT 1000 TIMES

Under assumption of an **<u>no effect</u>**

effect lower_ci p 1: -0.325 -0.6066086 0.9709938

exp.results[, mean(p<0.05)]</pre>

[1] 0.047

exp.results[, summary(effect)]

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.596250 -0.116250 0.001250 -0.000505 0.113750 0.563750

exp.results[, summary(lower_ci)]

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.8615 -0.3952 -0.2802 -0.2813 -0.1652 0.2806

SIMULATION

Research Question	Scenario	Mean Effect in Simulated Data	95% Confidence Interval of Mean Effect	False Positive %	True Negative %	False Negative %	True Positive %
Sole Question	No Effect	-0.000505	-0.2813	4.7%	95.3%		
Sole Question	Effect of 0.5 years	0.50023	0.2197			9.6%	90.4%

19

SMALLER SAMPLE POPULATION?

Sample population in each group	Power
80	90%
70	86%
60	81%
50	75%
40	66%
30	55%

20

We simulated the expected power for smaller sample populations to pre-empt a scenario where we are unable to recruit enough employees.

We can select a power that's a good trade-off commensurate with population size.

Contact us if there are any questions.

